Unravelling Income Inequality in Indonesia
A Machine Learning Approach to Understanding The Impact Of Information and Communication Technology
DOI:
https://doi.org/10.23969/jrie.v3i2.63Keywords:
Information and Communication Technology, Income Gap, Machine Learning, Linear Regression, K-means ClusteringAbstract
This study aims to analyze the effect of Information and Communication Technology (ICT) on income inequality in Indonesia. The analytical method used includes linear regression to evaluate the causal relationship between the dependent variable (Gini Ratio) and ICT indicators. Furthermore, the k-means clustering algorithm is used to group provinces based on ICT characteristics. The results of the regression analysis show that the ICT variables have a significant influence on the Gini Ratio, illustrating the close relationship between ICT and income inequality. In addition, clustering produces two regional groups: Cluster 1, with better access and use of ICT, and Cluster 2, with lower ICT characteristics but advantages in telecommunication infrastructure. This research shows the importance of inclusive and sustainable ICT development to reduce income inequality in Indonesia. Appropriate policies for increasing the accessibility and use of ICTs can have a positive impact on social and economic development throughout Indonesia.
References
Azies, H. Al, & Rositawati, A. F. D. (2021). Mapping of the Reading Literacy Activity Index in East Java Province, Indonesia: an Unsupervised Learning Approach. Proceedings of The International Conference on Data Science and Official Statistics, 2021(1), 211–223. https://doi.org/10.34123/ICDSOS.V2021I1.128
Che Arshad, N., & Irijanto, T. T. (2023). The creative industries effects on economic performance in the time of pandemic. International Journal of Ethics and Systems, 39(3), 557–575.
Dalal, K. R. (2020). Analysing the Role of Supervised and Unsupervised Machine Learning in IoT. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020, 75–79. https://doi.org/10.1109/ICESC48915.2020.9155761
Demir, A., Pesqué-Cela, V., Altunbas, Y., & Murinde, V. (2022). Fintech, financial inclusion and income inequality: a quantile regression approach. European Journal of Finance, 28(1), 86–107. https://doi.org/10.1080/1351847X.2020.1772335/SUPPL_FILE/REJF_A_1772335_SM4545.DOCX
Djulius, H., Lixian, X., Lestari, A. N., & Eryanto, S. F. (2022). The Impact of a Poor Family Assistance Program on Human Development in Indonesia. Review of Integrative Business and Economics Research, 11(4), 59–70.
Emerson, R. W. (2015). Causation and Pearson’s correlation coefficient. Journal of Visual Impairment and Blindness, 109(3), 242–244. https://doi.org/10.1177/0145482X1510900311/ASSET/0145482X1510900311.FP.PNG_V03
Faizah, C., Yamada, K., & Pratomo, D. S. (2021). Information and communication technology, inequality change and regional development in Indonesia. Journal of Socioeconomics and Development, 4(2), 224–235. https://doi.org/10.31328/JSED.V4I2.2669
Fuady, Dr. A. H. (2019). Teknologi Digital dan Ketimpangan Ekonomi di Indonesia. Masyarakat Indonesia, 44(1), 75–88. https://doi.org/10.14203/JMI.V44I1.803
Furman, E., Kye, Y., & Su, J. (2019). Computing the Gini index: A note. Economics Letters, 185, 108753. https://doi.org/10.1016/J.ECONLET.2019.108753
Jahanger, A., & Usman, M. (2022). Investigating the Role of Information and Communication Technologies, Economic Growth, and Foreign Direct Investment in the Mitigation of Ecological Damages for Achieving Sustainable Development Goals. Https://Doi.Org/10.1177/0193841X221135673. https://doi.org/10.1177/0193841X221135673
Liu, Y., & Gastwirth, J. L. (2020). On the capacity of the Gini index to represent income distributions. Metron, 78(1), 61–69. https://doi.org/10.1007/S40300-020-00164-8/TABLES/4
Manik, E., Affandi, A., Priadana, S., Hadian, D., & Puspitaningrum, D. A. (2023). Comparison of normality testing with chi quadrat calculations and tables for the statistical value departement of elementary school education student at the University of Jember. AIP Conference Proceedings, 2679(1), 020018.
Maulud, D. H., & Mohsin Abdulazeez, A. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1(4), 140–147. https://doi.org/10.38094/jastt1457
Monica, M., Ayuningtiyas, N. U., Al Azies, H., Riefky, M., Khusna, H., & Rahayu, S. P. (2021). Unsupervised Learning Approach for Evaluating the Impact of COVID-19 on Economic Growth in Indonesia. Communications in Computer and Information Science, 1489 CCIS, 54–70. https://doi.org/10.1007/978-981-16-7334-4_5/COVER
Patria, H., & Erumban, A. A. (2020). Impact of ICT Adoption on Inequality: The Journal of Indonesia Sustainable Development Planning, 1(2), 125–139. https://doi.org/10.46456/JISDEP.V1I2.58
PUTRA, F. P. (2019). PENGARUH PENGELUARAN PEMERINTAH DAN INVESTASI TERHADAP KETIMPANGAN PENDAPATAN DI PULAU SULAWESI.
Putri, M., & Sumardi, L. (2023). Dampak Teknologi Informasi terhadap Pola Interaksi Masyarakat : Studi Kasus di Desa Jantuk Lombok Timur. AS-SABIQUN, 5(1), 14–24. https://doi.org/10.36088/ASSABIQUN.V5I1.2582)
Rostiana, E., & Djulius, H. (2019). Micro, Small, and Medium Scale Industry as Means of Poverty Reduction. 1st International Conference on Economics, Business, Entrepreneurship, and Finance (ICEBEF 2018), 347–351.
Rostiana, E., Djulius, H., & Sudarjah, G. M. (2022). Total Factor Productivity Calculation of the Indonesian Micro and Small Scale Manufacturing Industry. Ekuilibrium: Jurnal Ilmiah Bidang Ilmu Ekonomi, 17(1), 54–63.
Setiawan, M., Indiastuti, R., Hidayat, A. K., & Rostiana, E. (2021). R&D and Industrial Concentration in the Indonesian Manufacturing Industry. Journal of Open Innovation: Technology, Market, and Complexity, 7(2), 112.
Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796
Song, J., Verbeeck, J., Huang, B., Hoaglin, D. C., Gamalo-Siebers, M., Seifu, Y., Wang, D., Cooner, F., & Dong, G. (2022). The win odds: statistical inference and regression. Https://Doi.Org/10.1080/10543406.2022.2089156, 33(2), 140–150. https://doi.org/10.1080/10543406.2022.2089156
Straub, S. (2008). Infrastructure and Growth in Developing Countries: Recent Advances and Research Challenges. http://econ.worldbank.org.
Suharno, Anwar, N., & Priambodo, A. (2022). The Digital Divide’s Effect on Local Revenue and Gini Ratio. KnE Social Sciences, 2022, 274–280–274–280. https://doi.org/10.18502/KSS.V0I0.12337
Taloba, A. I., Abd El-Aziz, R. M., Alshanbari, H. M., & El-Bagoury, A. A. H. (2022). Estimation and Prediction of Hospitalization and Medical Care Costs Using Regression in Machine Learning. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/7969220
Untari, R., Savio Priyarsono, D., & Novianti, T. (2019). Impact of Information and Communication Technology (ICT) Infrastructure on Economic Growth and Income Inequality in Indonesia. https://doi.org/10.32628/IJSRSET196130
Wajuba, L., Fisabilillah, P., & Hanifa, N. (2021). ANALISIS PENGARUH FINTECH LENDING TERHADAP PEREKONOMIAN INDONESIA. Indonesian Journal of Economics, Entrepreneurship, and Innovation, 1(3), 154–159. https://doi.org/10.31960/IJOEEI.V1I3.866
Widjanarko Otok, B., Suharsono, A., Erma Standsyah, R., & Al Azies, H. (2022). Partitional Clustering of Underdeveloped Area Infrastructure with Unsupervised Learning Approach: A Case Study in the Island of Java, Indonesia. Journal of Regional and City Planning, 33(2), 29–48. https://doi.org/10.5614/jpwk.2022.33.2.3
Yousefi, A. (2011). The impact of information and communication technology on economic growth: evidence from developed and developing countries. Http://Dx.Doi.Org/10.1080/10438599.2010.544470, 20(6), 581–596. https://doi.org/10.1080/10438599.2010.544470
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Riset Ilmu Ekonomi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
						
							












